

INSTITUTE FOR NUCLEAR SCIENCES - VINČA

Laboratory for Thermal Engineering and Energy

Tel/Fax: +381-11-3443498 +381-11-2453670 E-mail: dejan2004@vinca.rs

AGRICULTURAL BIOMASS FOR ENERGY PURPOSES IN SERBIA

Dr Dejan Đurović

Hyatt Regency Belgrade, 23.09.2014.

SCOPE OF PRESENTATION

1. Introductory notes

- Why is RES important for Serbia ?
- Why biomass in particular ?
- Why focus on baled agricultural leftovers?

2. R&D Activities on Utilization of Baled Biomass (Agricultural Residues)

3. Industrial Application

4. Conclusions

Energy balance – Serbia

Mtoe	Dom. prod.	Import	
Coal	7.823	0.802	
Oil	1.122	3.099	
Gas	0.405	1.391	
Total primary energy consumption	16.192		

Final energy consumption	Mtoe	9.252
Industry		2.708
Transport	Nitoe	2.015
Households		4.529

Why is RES important for Serbia ?

Energy indicators:	Serbia	EU
Final energy consumption (toe/c)	0.86	2.39
Electricity consumption (MWh/c)	3.88	6.20
Final energy intensity (kg.oe/\$)	0.67	0.19
Electricity intensity (kWh/\$)	2.45	0.50

1 toe = 41868 MJ = 11.63 MWh

- \Rightarrow energy consumption per cap. ~ 2-3 x less than in EU
- \Rightarrow 3-5 x less efficient use of energy than EU
- ⇒ lignite is main domestic energy source (but reserves for only next ~40 years, even if no new units)
- \Rightarrow presently ~ 30% of energy consumed is imported

RES potential in Serbia		Biomass	Hydro	Solar	Geot.	Wind	Σ
	Mtoe	3.4	1.7	0.2	0.2	0.1	5.6

Quantities and energy potential of Solid Recovery Fuel (SRF) in Serbia

		2010	2015	2020
Quantities of SRF	†/y	828.000	922.000	1.180.000
LHV	kJ/kg	16.000	16.000	16.000
SRF for combustion	GWh/y	3.680	4.100	5.250
	toe/y	316.000	352.000	451.000
Potential electricity production from SRF	GWh _e /y	1.230	1.370	1.700

Why focus on baled biomass ?

Туре	Structure	Energy pot. [TJ/year]	Total [TJ/year]	
	Heating wood	10 000		
Woody biomass	Wood waste after cutting	23 000	approx. 43 000	
	Wood waste from industry	2 800		
	Unofficial (illegal) cutting	6 700		
Agricultural	Farming	40 000		
Agricultural biomass	Orchards and vineyards	25 000	approx. 65 000	
		TOTAL:	approx. 108 000	

Principles on Which R&D Activities Were Based On

R&D, supported by Serbian Ministry of Science and Technological Development and also by a private boiler company, was based on following principles:

- Technology has to be suitable for the most common agricultural biomass (residues collected on the fields in the form of bales).
- Technology should be consistent with capabilities of local industry,
- Technology should satisfy environmental norms.
- Energy efficiency has to be ≈ 85% for thermal plants, and ≈ 80% for CHP plants, similar to EU norms.
- Devices have to be simple and thus low cost, both in terms of low investments, self consumption and operation/maintenance costs,
- Logistic systems (for collection, transport, storage, ash management) should be developed at the same time.

R&D Phases

- Analysis of the operation data of the similar facilities;
- Laboratory investigation of the potential fuels;
- Investigation of combustion characteristics of potential fuels;
- Simulation of combustion in cigarette combustion furnaces, in order to optimize of the furnace dimensions;
- <u>Construction and testing of the experimental facilities, first</u> <u>small then industrial-scale</u>, for the purpose of obtaining project parameters and correction of the mathematical models;
- Development of the methodology for <u>heat accumulator</u> calculations;
- Development of the <u>automatic control software</u>;
- <u>Construction of the hot-water boiler</u>, designed for industry, demonstration, and experiments, <u>power of 1.5 -2 MW</u>;
- Detail testing of the boiler.

R&D Highlights

Results obtained by own developed models. Used for obtaining furnace dimensions and optimization of working parameters.

Experimental facility

Scheme of an industrial unit

Industrial prototype

Advantages

- Minimal fuel preparation;
- Simple construction;
- Low investment cost;
- Low CO emission in flue gas;
- Low self consumption 0,5%;

CHP facility

- CHP (\approx 0.5-0.6 MW_e i \approx 4-4.5 MW_{th}).
- Grant 6.818.000 € Suisse government.
- Project III42011
- HORIZON 2020

Conclusions

- 1. A cigar type furnace has been developed, with some unique patented technical solutions.
- 2. Developed furnace specifically designed for baled agricultural residues.
- 3. R&D activities included all auxiliary equipment and logistic systems.
- 4. Suitable for CHP schemes up to 1-1,5 MW of electricity and 10 MW of heat.
- 5. Low cost technology, consistent with capabilities of local industry.
- 6. Solution suitable for WB and SEE countries.
- 7. Engagement of local industries, sustainable development of rural areas.